On Non-Homogeneous Sextic Equation with Five Unknowns

R.Anbuselvi ${ }^{1}$,S.A. Shanmugavadivu ${ }^{2}$
${ }^{1}$ Professor, Department of Mathematics, A.D.M. College for Women(Autonomous), Nagapattinam-611001, Tamilnadu, India.
${ }^{2}$ Professor, Department of Mathematics, T.V.K. Govt Arts College, Tiruvarur -610003, Tamilnadu, India.

Abstract

The non-homogeneous sextic equation with five unknowns given by $(2 x+2 y)\left(2 x^{3}-2 y^{3}\right)=$ $32\left(2 z^{2}-2 w^{2}\right) T^{4}$ is considered and analysed for its non-zero distinct integer solutions. Employing the linear transformations $x=2 u+2 v, y=2 u-2 v, z=4 u+v, w=4 u-v,(u \neq v \neq 0)$ and applying the method of factorization, three different patterns of non-zero distinct integer solutions are obtained. A few interesting relation between the solutions and special numbers.

Keywords: Integer solutions, Non-homogeneous sextic equations with five unknowns.

1. INTRODUCTION

The theory of Diophantine equations offers a rich variety of fascinating problems [1-4] particularly, in $[5,6]$ sexticequation with three unknowns are studied for their integral solutions [7, 12] analyze Sextic equations with five unknowns for their non-zero integer solution. This communication analyzes a Sextic equations with five unknowns given by $(2 x+$ $2 y)\left(2 x^{3}-2 y^{3}\right)=32\left(2 z^{2}-2 w^{2}\right) T^{4}$. Infinitely many Quintuples (x, y, z, w, T). Satisfying the above equation is obtained. Various interesting properties among the values of x, y, z, w and T are presented.
2. NOTATIONS

* $t_{m, n}=$ Polygonal number of rank n with size m
* $\quad P_{n}{ }^{m}=$ pyramidal number of rank n with size m
* $\mathrm{P}_{\mathrm{r}}{ }^{\mathrm{n}}=$ pronic number of rank n
* $\mathrm{SO}_{\mathrm{n}}=$ Stella octangular number of rank n
* $\mathrm{j}_{\mathrm{n}}=$ jacobthallucas number of rank n
* $\mathrm{J}_{\mathrm{n}}=$ Jacobthal number of rank n
* $\mathrm{Gno}_{\mathrm{n}}=$ Gnomic number of rank n
- $\mathrm{Cp}_{\mathrm{n}}{ }^{6}=$ Centered pyramidal number of rank n with size m
* $\mathrm{Cp}_{\mathrm{n}}{ }^{14}=$ Centered tetra decagonal pyramidal number of rank n
* $K y_{n}=$ Kynea number of rank n.
* $O b l_{n}=$ Oblong Number of rank n
* $C H_{n}=$ Centered Hexagonal number of rank n.
* $C P_{n}=$ Centered pentagonal number of rank n.
* $S_{n}=$ Star number of rank n.
* $4 D F_{n}=$ Four Dimensional figurate number
whose generating polygon is a square.

3. METHOD OF ANALYSIS

The non-homogeneous sextic equation with five unknowns to be solved is given by. $(2 x+2 y)\left(2 x^{3}-2 y^{3}\right)=32\left(2 z^{2}-2 w^{2}\right) T^{4}$

The substitution of the linear transformations $x=2 u+2 v, y=2 u-2 v, z=4 u+v, w=$ $4 u-v,(u \neq v \neq 0)$
In (1) leads to
$v^{2}+3 u^{2}=4 T^{4}$
(3) is solved through different approaches and different patterns of solutions thus obtained for (1) are illustrated below:

Pattern:1

Assume $T=T(a, b)=a^{2}+3 b^{2}, a, b>0 \cdots--$ ----------(4)
Write 4 as
$4=(1+i \sqrt{3})(1-i \sqrt{3})--\cdots-\cdots-----(5)$
Using (4) and (5) in (3) and employing the method of factorization and equating positive factors, we get
$v+i \sqrt{3} u=(1+i \sqrt{3})(a+i \sqrt{3} b)^{4}$
Equating real and imaginary parts, we have
$u=u(a, b)=a^{4}+9 b^{4}-18 a^{2} b^{2}+$ $4 a^{3} b-12 a b^{3}$

Available online at www.ijrat.org

$$
\begin{array}{ll}
v=v(a, b) \quad & \\
& =a^{4}+9 b^{4} \\
& -18 a^{2} b^{2}-12 a^{3} b \\
& +36 a b^{3}
\end{array}
$$

Employing (2), the values of $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}$ ant T are

$$
\begin{aligned}
& \text { given by } \\
& x=x(a, b)=4 a^{4}+36 b^{4}- \\
& 72 a^{2} b^{2}-16 a^{3} b+52 a b^{3} \\
& y=y(a, b)=32 a^{3} b-96 a b^{3} \\
& z=z(a, b)=5 a^{4}+45 b^{4}- \\
& 90 a^{2} b^{2}+4 a^{3} b-12 a b^{3} \\
& w=w(a, b)=3 a^{4}+27 b^{4}- \\
& 54 a^{2} b^{2}+28 a^{3} b-84 a b^{3} \\
& T=T(a, b)=a^{2}+3 b^{2}
\end{aligned}
$$

Which represent non zero distinct integer solutions of (1) in two parameters.

Properties

$$
\begin{aligned}
> & T\left(1,2^{n}\right)+9 J_{n}+3 j_{n}-4=3 k y_{n} \\
> & x(a, 1)-4\left(T_{4, a}\right)^{2}-16 C P_{a}^{6}+72 T_{4, a} \equiv \\
& 36(\bmod 52) \\
> & w(a, 1)+T\left(a^{2}, 1\right)-4 F n_{a}^{4}+50 T_{4, a}+ \\
& 2816 C P_{a}^{6}-30=0 \\
> & T\left(a^{2}, a^{2}\right)-4\left(T_{4, a}\right)^{2}=0 \\
> & y(1, b)-3 C P_{b}^{4}-67 C P_{b}^{6}+72 C P_{b}^{3} \equiv \\
& 0(\bmod 72) \\
> & y(a, 1)-z(a, 1)-w(a, 1)+ \\
& 384 D F_{a}-136 O b l_{a} \equiv 72(\bmod 136) \\
> & T(a, a+1)-T_{4, a}-P r_{a}-3 G n o_{a}=6 \\
> & z(1, b)-180 D F_{b}+24 P_{b}^{5}+C H_{b}- \\
& 36 O b l_{b} \equiv 4(\bmod 43) \\
> & 7 z(1, b)-w(1, b)-3456 F N_{b}^{4}+ \\
& 2\left(T_{4,12 b}\right)-j_{4}-3 J_{4}=0 \\
> & T(b(b+1), b+1)-12 F N_{b}^{4}- \\
& 2 C P_{b}-S O_{b} \equiv 1(\bmod 2)
\end{aligned}
$$

Pattern:2

One may write (3) as

$$
\begin{equation*}
v^{2}+3 u^{2}=4 T^{4} * 1- \tag{6}
\end{equation*}
$$

Also, write 1 as

$$
\begin{equation*}
1=\frac{(2+i 2 \sqrt{3})(2-i 2 \sqrt{3})}{16} \tag{7}
\end{equation*}
$$

Substituting (4), (5) and (7) in (6) and employing the method of factorization and equating positive factors we get

$$
v+i \sqrt{3} u=(1+i \sqrt{3}) \frac{(2+i 2 \sqrt{3})}{4}(a+
$$

$$
i \sqrt{3} b)^{4}
$$

Equating real and imaginary parts, we have

$$
\begin{aligned}
& u=u(a, b)=a^{4}+9 b^{4}-18 a^{2} b^{2}- \\
& 4 a^{3} b+12 a b^{3} \\
& \begin{aligned}
v=v(a, b)
\end{aligned} \\
& \qquad \begin{aligned}
& =-a^{4}-9 b^{4} \\
& +18 a^{2} b^{2}-12 a^{3} b \\
& +36 a b^{3}
\end{aligned}
\end{aligned}
$$

In view of (2), the integer values of x, y, z, w and T are given by

$$
\begin{aligned}
& x=x(a, b)=-32 a^{3} b+96 a b^{3} \\
& y=y(a, b)=4 a^{4}+36 b^{4}- \\
& 72 a^{2} b^{2}+16 a^{3} b-48 a b^{3} \\
& z=z(a, b)=3 a^{4}+27 b^{4}- \\
& 54 a^{2} b^{2}-28 a^{3} b+84 a b^{3} \\
& w=w(a, b)=5 a^{4}+45 b^{4}- \\
& 90 a^{2} b^{2}-4 a^{3} b+12 a b^{3} \\
& T=T(a, b)=a^{2}+3 b^{2}
\end{aligned}
$$

Which represent non-zero distinct integer solutions of (1) in two parameters

Properties

$$
\begin{aligned}
& 3 y(a, 1)-4 z(a, 1)-480 S O_{a}- \\
& 800 C P_{a}^{6} \\
> & 3 x(a, a)+16 T\left(a^{2}, a^{2}\right) \text { is a biquadratic } \\
& \text { number } \\
> & w(a, 1)+90 T(a, 1)- \\
& 5\left(T_{4, a}\right)^{2}+8 C P_{a}^{3}+16 G n o_{a}-j_{8}=74 \\
> & z(a, 1)-3 T\left(a^{2}, 1\right)+12 C P_{a}^{14}+ \\
& 54\left(T_{4, a}\right) \equiv 18(\bmod 68) \\
> & x(1, b)-36 \text { Biq }_{b}-52 C u b_{b}+ \\
& 18 T_{4,2 b} \equiv 4(\bmod 16) \\
> & x(1, b)-z(1, b)-w(1, b)+ \\
& 864 F N_{b}^{4}-2\left(T_{4,6 b}\right)+j_{3}=1 \\
> & T(2 a+1,2 a)-T_{13, a}+5 O b l_{a}+ \\
& 4 G n o_{a}+j_{2} \\
> & x(b, b+1)-384 F N_{b}^{4}-32 T_{4, b}^{2}- \\
& 64 O b l_{b}-512 P_{b}^{5} \equiv 0\left(\bmod _{32}\right) \\
> & z(a+1, a)-29 B i q_{a}-105 C P_{a}^{6}+ \\
& 138 T_{4, a}-9 O b l_{a}+j_{3}+j_{5}=0 \\
> & w(1, b)-5 T(1, b)-45 T_{4, b}^{2}- \\
& 18 O H_{b}+95 T_{4, b}+10 O b l_{b}
\end{aligned}
$$

Available online at www.ijrat.org

Write (3) as

$$
3\left(u^{2}-T^{4}\right)=T^{4}-v^{2}
$$

Factorizing (10) we have

$$
\begin{equation*}
3\left\{\left(u+T^{2}\right)\left(u-T^{2}\right)\right\}=\left(T^{2}+\right. \tag{11}
\end{equation*}
$$

v) $\left(T^{2}-v\right)$

This equation is written in the form of ratio as

$$
\begin{equation*}
\frac{3\left(u-T^{2}\right)}{T^{2}-v}=\frac{T^{2}+v}{u+T^{2}}=\frac{a}{b}, \quad b \neq 0 \tag{12}
\end{equation*}
$$

Which is equivalent to the system of double equations

$$
\begin{equation*}
3 b u+a v-(3 b+a) T^{2}=0-------- \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
-a u+b v+(b-a) T^{2}=0--------- \tag{14}
\end{equation*}
$$

Applying the method of cross multiplication, we get

$$
\begin{gather*}
u=-a^{2}+3 b^{2}+2 a b \\
v=a^{2}-3 b^{2}+6 a b-\cdots-\cdots---\cdots \\
T^{2}=a^{2}+3 b^{2} \tag{16}
\end{gather*}
$$

Now, the solution for (17) is

$$
\begin{gathered}
a=3 p^{2}-q^{2}, b=2 p q, T=3 p^{2}+ \\
q^{2}-\cdots--------------(18) \\
\text { Using (18) in (15) and (16), we get }
\end{gathered}
$$

$$
\begin{aligned}
& u=u(p, q)=-9 b^{4}-q^{4}+ \\
& \begin{aligned}
& 18 p^{2} q^{2}+12 p^{3} q-4 p q^{3} \\
& v=v(p, q)
\end{aligned} \\
& \qquad \begin{aligned}
& \\
& -18 p^{4}+q^{2} q^{2}+36 p^{3} q \\
& -12 p q^{3}
\end{aligned}
\end{aligned}
$$

In view of (2), the integer values of x, y, z, w and T are given by

$$
\begin{aligned}
& x=x(p, q)=2 u+2 v=96 p^{3} q- \\
& 36 p q^{3} \\
& y=y(p, q)=2 u-2 v=-36 p^{4}- \\
& 4 q^{4}+72 p^{2} q^{2}-48 p^{3} q+16 p q^{3}
\end{aligned}
$$

$$
\begin{gathered}
z=z(p, q)=4 u+v=-27 p^{4}- \\
3 q^{4}+54 p^{2} q^{2}+84 p^{3} q-28 p q^{3} \\
w=w(p, q)=4 u-v=-48 p^{4}- \\
5 q^{4}+90 p^{2} q^{2}+12 p^{3} q-4 p q^{3} \\
T=T(p, q)=3 p^{2}+q^{2}
\end{gathered}
$$

Which represent non-zero distinct integer solutions of (1) in two parameters

Properties

$$
\begin{aligned}
> & x(p, 1)+2 y(p, 1)+864 F N_{p}^{4}- \\
& 72 T_{4, p}+j_{3}=1 \\
> & 3 x(p, p)+16 T\left(p^{2}, p^{2}\right) \text { is a biquadratic } \\
& \text { number } \\
> & w(p, 1)-30 T(p, 1)+ \\
& 45\left(T_{4, p}\right)^{2}-4 S O_{p}+4 C P_{n}^{6}+35=0 \\
> & T(1,2) \text { is mersenne primes and perfect } \\
& \text { number } \\
> & x(p, 1)-48 S O_{p} \equiv 0(\bmod 16) \\
> & y(1, q)+48 F N_{q}^{4}-24 O H_{q}-T_{24, q}- \\
& 57 T_{4, q} \equiv 36(\bmod 46) \\
> & T(2 p, 2 p+2)-S_{p}-10 P_{b}- \\
& 2 G n o_{p}-j_{2} \\
> & x(1, q)+T(1, q)+16 S O_{q}-O b l_{q}- \\
& G n o_{q} \equiv 4(\bmod 77) \\
> & z(1, q)+3 T_{4, q 2}-28 C P_{q}^{6}-54 P r_{q}- \\
& 15 G n o_{q}+j_{3}=5
\end{aligned}
$$

4. CONCLUSION

First of all, it is worth to mention here that in (2), the values of z and w may also be represented byz $=u v+$ $4, w=u v-4$ and $z=2 u v+2, w=2 u v-2$ and thus, will obtain other choices of solutions to (1). In conclusion, one may consider other forms of Sextic equation with five unknowns and search for their integer solutions.

REFERENCES

[1] Dickson, L.E., History of theory of numbers, vol.2, Chelsea publishing company, Newyork(1952).
[2] Carmichael, R.D., The theory of numbers and Diophantine analysis, Dover publications, Newyork(1959).
[3] Mordell, L.J., Diophantine equations, Academic press, London (1969).
[4] Telang, S.G., Number Theory, Tata MC Graw Hill Publishing Company, New Delhi (1996).
[5] Gopalan, M.A., ManjuSomanath and Vanitha, N., "Parametric Solutions of $x^{2}-y^{6}=z^{2} \quad$ ", ActaCienciaIndica XXXIII, vol.3, 1083-1085, 2007.

Available online at www.ijrat.org

[6] Gopalan, M.A., Sangeetha, G., "On the Sextic Equations with three unknowns $x^{2}-x y+y^{2}=$ $\left(k^{2}+3\right)^{\mathrm{n}} \mathrm{z}^{6 \times}$,Impact J.Sci.tech, Vol.4, No: 4, 8993, 2010.
[7] Gopalan, M.A., Vijayashankar, A., "Integral solutions of the SexticEquation $x^{4}+y^{4}+z^{4}=$ $2 w^{6}$ ", Indian journal of Mathematics and Mathematical Sciences, Vol.6, No:2, 241-245, 2010.
[8] Gopalan, M.A., Vidhyalakshmi, S., Vijayashankar, A., "Integral Solutions of Non-Homogeneous Sexticequation $x y+z^{2}=w^{6}$ ", Impact J.Sci.tech, Vol.6, No: 1, 47-52, 2012.
[9] Gopalan, M.A., Vidhyalakshmi, S., Lakshmi, L., "On the Non-Homogeneous SexticEquation $x^{4}+2\left(x^{2}+w\right) x^{2} y^{2}+y^{4}=z^{4} "$, IJAMA, 4(2), 171-173, Dec (2012).
[10] Gopalan, M.A., Vidhyalakshmi, S., Kavitha, A., "Observations on the Homogeneous Sextic Equation with four unknowns $x^{3}+y^{3}=2\left(k^{2}+\right.$ 3) $z^{5} w$ ", International Journal of Innovative Research in Science, Engineering and Technology, Vol.2, Issue: 5, 1301-1307, 2013.
[11] Gopalan, M.A., Sumathi, G., Vidhyalakshmi, S., "Integral Solutions of Non- homogeneous Sextic Equation with four unknowns $x^{4}+y^{4}+16 z^{4}=$ $32 w^{6 "}$, Antarctica J.Math, 10(6), 623-629, 2013.
[12] Gopalan, M.A., Sumathi, G., Vidhyalakshmi, S., "Gaussian Integer Solutions of Sextic Equations with four unknowns $x^{6}-y^{6}=4 z\left(x^{4}+y^{4}+\right.$ w^{4})", Archimedes, J.Math, 3(3), 263-266, 2013.
[13] Gopalan, M.A., Vidyalakshmi, S., Lakshmi, K., "Integral Solutions of Sextic Equation with Five unknowns $x^{3}+y^{3}=z^{3}+w^{3}+3(x-y) t^{5 "}$, IJERST, 1(10), 562-564, 2012.
[14] Gopalan, M.A., Sumathi, G., Vidyalakshmi, S., "Integral Solutions of Sextic Non-Homogeneous Equation with Five unknowns $x^{3}+y^{3}=z^{3}+$ $w^{3}+6(x+y) t^{5 "}$, International Journal of Engineering Research, Vol.1, Issue.2, 146-150, 2013.
[15] Gopalan, M.A., AarthyThangam, S., Kavitha, A., "On Non-homogeneous Sextic equation with five unknowns2 $(x-y)\left(x^{3}+y^{3}\right)=28\left(z^{2}-w^{2}\right) T^{4 \prime}$, Jamal Academic Research Journal (JARJ) , special Issue, 291-295, ICOMAC- 2015.
[16] Meena, K., Vidhyalakshmi, S., AarthyThangam, S., "On Non-homogeneous Sextic equation with five unknowns $(x+y)\left(x^{3}+y^{3}\right)=26\left(z^{2}-w^{2}\right) T^{4 ",}$ Bulletin of Mathematics and Statistics Research, Vol.5, Issue.2, 45-50, 2017.

